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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATION CRITERIUN*

Hamparsum Bozdogan and Stanley L. Sclove
University of [1linois at Chicayo
ABSTRACT
Multi-sample cluster analysis, the problem of grouping samples, is
studied from an information-theoretic viewpoint via Akaike's Information
Criterion (AIC). This criterion combines the maximum value of the likelinood
with the number of parameters used in achieving that value. The multi-sample
cluster problem is defined, and AIC is developed for this problem. The form of
AIC is derived in both the multivariate analysis of variance (MANOVA) model and
in the multivariate model with varying mean vectors and variance-covariance
matrices. Numerical examples are presented for AIC and another criterion
called w-square. The results demonstrate the utility of AIC in identifyiny the

best clustering alternatives.—

Key Words and Phrases: Multi-sample™xjuster analysis; w-sguare Criterion;
Akaike's Information Criterion (AIC); MANOVA model; multivariate model
with varying mean vectors and variance-covariance matrices; maximum

likelihood.
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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATIUN CRITERIUN*

Hamparsum Bozdogan and Stanley L. Sciove
University of Illinois at Chicago

1. Introduction

In this paper, we shall develop Akaike's Information Criterion (AIC) for
multi-sample cluster analysis with common and also with varying variance-
covariance matrices, since often in practice the assumption of equal variance-
covariance matrices is a rather dubious requirement.

The problem of multi-sample cluster analysis arises when we are given a
collection of samples (groups, treatments), to be clustered into homoyeneous
groups.

Many practical situations require the presentation of multivariate data
from several structured samples for comparative purposes and the grouping of
the heterogeneous samples into homogeneous sets of samplies. Thus, it is
reasonable to provide a practically useful statistical procedure that would use
some sort of statistical model to aid in comparisons of various collections of
samples, identify homogeneous groups of samples, telling us which samples
should be clustered together and which should not.

Examples of multi-sample clustering situations are abundant in practice.
We shall give two of these examples later and illustrate numerically.

The concept of multi-sample cluster analysis presented in this paper is
relatively new. It has not been definitively studied before either using the
conventional simultaneous test procedures (STP's) which are based on inference
for the muitivariate analysis of variance (MANOVA) model, or from an informa-

tion-theoretic viewpoint, which we shall adopt in this paper via Akaike's

*Presented by the first author as an Invited “aper, Special Session on
Cluster Analysis, 789th Meetiny, American Mathematical Society, University of
Massachusetts, Amherst, MA, Uctober 16-18, 1981,
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Information Criterion (AIC).
Multivariate analysis of variance (MANUVA) is a widely used model for
comparing two or more multivariate samples with a common covariance matrix. In

this model, the likelihood ratio principle leads to Wilks' (17] lambda, or in

short Wilks' A Criterion as the test statistic. It plays the same role in

multivariate analysis that F-ratio statistic plays in the univariate case.
Often, however, the formal analyses involved in MANUVA are not revealing or
informative. Moreover, the test statistics used under this model are derived

under the assumption of equal covariance matrices. If we have a reason to doubt

1ﬁf equality of covariances, then we may first want to test the eyuality of covari-

E?; ances. In the multivariate case the equality of covariance matrices is
!I certainly more hazardous. 1f the covariance matrices are unequal, a bias occurs
2 in the test for equality of mean vectors. Therefore, for this reason we may

want to first test the equality of covariance matrices instead of immediately

leaping to the MANOVA hypothesis. This is an important option to use in

' .-;‘—‘"'.'.
PR R A

clustering groups or samples when we are not willing to assume equal covariance

matrices between the samples or groups in the multi-sample data.

Once the MANOVA hypothesis of equality of mean vectors is rejected at some

prescribed significance level a, then it is necessary to study in detail the

discrepancies between the null hypothesis and the data.

In the statistical literature, in the MANOVA case, there are a variety of
conventional multiple comparison procedures for studying the discrepancies
between the null hypothesis and the data. These test procedures are: Step-down
Methods, Union Intersection Tests, and Simultaneous Confidence Intervais. For

more details on these test procedures refer to Gabriel (7], Krishnaiah ([lu],

{11]), Srivastava [16], and others.

................................................................
........................
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As noted in Consul [4], the exact distributions of these conventional
test procedures are either unknown or are known for some particular cases
only. Moreover, the problem of finding the percentage points of these statis-
3; tics has become rather difficult. For these reasons, and for our purposes,

these test procedures have little practical use. Furthermore, they create

Fi additional problems in terms of how to control the overall error rate a, Since
ﬂf we can no longer use the same a to discover where the discrepancies between

S

0 the null hypothesis and the data might occur.

In the case of testing the equality of covariance matrices, we find our-
selves in the same situation as in the MANOVA model. For this probiem also,

there are in the statistical literature several test procedures. For example,

one of the most commonly used tests is Box's M test despite the fact that it

is very restrictive. For instance, Box's approximation seems to be only yood
if each sample size, ng exceeds 20, and if the number of samples, K, and the
number of variables, p, exceed 5. It is also very expensive to compute it on
a high speed computer, even on an IBM 370.

Once the nypothesis of equality of covariance matrices is rejected at
some prescribed significance level a, then again it is neces;ary to study in
detail the discrepancies between the null hypothesis and the data.

Further reviewing the statistical literature, we see that there are no

conventional simultaneous test procedures (STP's) in this case in studying the

J: discrepancies between the null hypothesis and the data. Jne can perhaps

. construct a sequential likelihood ratio type test, but as is mentioned in

:! Muirhead ([14], p. 296), the likelihood ratio test in testing the eyuality of
&

p

i
are not all equal, it is biased. Therefore, in the multi-sample cluster

covariance matrices has the defect that, when the sample sizes n ,nz,....nK
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problem with varying parameters, carrying out a sequence of likelihood ratio
tests leaves much to be desired in identifying homoyeneous yroups of sampies.

More recently, however, in the statistical literature, we see 4 likelihood

based approach, called w-syuare criterion given in Mardia et al. [12] to aid

_1

£ in comparing various coliections of samples, identifyiny homoyeneous yroups of
i samples, and telling which should be clustered together. For normal samples
b

with equal covariance matrices, the w-square criterion is defined by

K - = -~ - =
o1 ni(Xj-Xg)'z-l(Xj-Xg)
g.]_ -

XjeCy

2
u (1.1) "

where

the set of ZJ assigned to the yth group, y=l, 2,...,K,

ATEL COSMOMRCHERES
o
«Q
"

g Xg = the weighted mean vector of the means in the
- gth group, or the cluster set Cg of groups,
L = W/(n-K), the pooled estimate of g,
K
W = ] Agis tne within-samples SSP matrix,
g=1
K
n= 1 ng and
g=1

K = the number of groups or samples to be clustered.

If the matrix of Mahalanobis distances Ujj given by

2 - e . .
D = (Xi-XJ)'T=l(Xj=X;
i (X1-X3) ' L2 (X Kj)

........................................
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. i 2 .
is available, then for computational convenience, wa can be written as

K
gtl 9 g

2 2
(1.2) w =1/2 ninJD
a

where

Thus, when we are given multi-sample data and wish to cluster the samples,
2
we compute w‘ in (1.1) or (1.2) for some or all of the alternative groupings of

2
samples, and choose the minimum of w to be the “"best" alternative clusteriny
a

of samples. This is appropriate, since maximizing the likelihood implies
minimizing wz.
a 2
Even thougnh the wa criterion is a step forward in identifyiny homoyeneous
groups of samples and evaluating muiti-sample clusters, it has some disadvan-
tages. For instance, it does not make any allowance for m, the number of
) parameters estimated within the model and the subsequent alternative submodels.
It is always zero when the groups or samples are clustered as singletons, as we
shall see later in Section 4. As it is yiven in (l.1), we can only work with
5 : wi criterion when we assume equal covariance matrices.
For the above stated reasons, and the probiems encountered in the conven-
tional test procedures which we discussed above, in this paper we shall propose
Akaike's Information Criterion (AIC) as a new and unifying procedure for

evaluating multi-sample clusters, and use it to identify the best clusteriny

alternatives.

In 1971, Akaike first introduced an information criterion, referred to as
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a Model Identification Criterion or Akaike's Information Criterion (AIC), for
the identification and comparison of statistical models in a class of competing

models with different numbers of parameters. It is defined by

(1.3) AIC = (-2)loge(maximized likelihood) °
, + 2 (number of free parameters within the model).

It was obtained by Akaike ([2], [3]) based on the recognition that the classi-

cal method of maximum likelinood could be viewed as a method of identification

of a statistical model realized by maximiziny an estimate of the yeneralized
entropy, or the expected log likelihood, of the model beiny fitted. It esti-
mates minus twice the expected log likelihood of the model whose parameters are

determined by the method of maximum likelihood. When several competiny models

are being compared or fitted, AIC is a simple procedure which measures the

T .
atalv kW

IO AN
ra_s LS el

badness of fit or the discrepancy of the estimated model from the true model

when a set of data is given. The first term in (1.3) stands for the penalty of

badness of fit when the maximum likelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other nand,

stands for the penalty of increased unreliability or compensation for the bias

in the first term as a consequence of increasing number of parameters. I[f more
parameters are used to describe the data, it is natural to get a laryer
1ikelihood, possibly without improving thc true goodness of fit by penalizing
the use of additional parameters.

Thus, when there are several competing models, the parameters within the
models are estimated by the method of maximum likelihood and tne AlC-values are

computed and compared to find a model with the minimum value of AIC. This

...................
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procedure is called the minimum AIC procedure. The model with the minimum AIC

is called the minimum AIC estimate (MAICE) and is designated as the best model.

Thus, in applying AIC the emphasis is on comparing the "goodness of fit" of
various models with an allowance made for parsimony.

In Section 2, we shall define the general muiti-sample cluster problem.
In Section 3, we shall derive the AIC procedure both for the miltivariate
analysis of variance (MANOVA) model, and for the rultivariate model with vary-
ing covariance matrices. We shall, in Section 4, give aifferent numerical
examples of multi-sample cluster analysis on different real data sets to demon-
strate our results from applying minimum AIC procedures in different computer
analyses. Finally, in Section 5, we shall present our conclusions and

discussion.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has been measured on p response

or outcome measures (dependent variables) simultaneously in K independent

groups or samples (factor levels). Let

(2.1) X(nxp)=

l|,<><--o|><|><l
| A

be a single data matrix of K groups or samples, where Xg (nyxp) rezresents the
observations from the g-th group or sample, g=1,2,...,K, and n = ) Ng. The

g=l
goal of cluster analysis is to put the K groups or samples into k homoyeneous
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groups, samples, or classes where k is unknown, but k<K.

Pften individuals or objects have been sampled from K>1 populations. The
data matrix my be represented in partitioned form as above. Let ng represent
the number of individuals in the y-th (random) sample, g=i,2,...,K. The ng are
;ot restricted to being gqual or proportional to other ng‘s. The total number
of observations is n = Z ng. Let Xgi be the pxl vector of observations in

group g=1,2,...,K, and for individual i=1,2....,ng.

3. Derivation of AIC for Two Multivariate Models

3.1 AIC for the Multivariate Analysis of Variance (MANUVA) Model:

AIC (common E)

We now turn our attention to consider situations with several multivariate

normal samples.

For example, we may have multi-sample data with sample sizes n_, N_,cee,n

1 2 K

which are assumed to come from K populations, the first with mean vector ¥ and

covariance matrix £, the second with mean vector y  and covariance matrix Z,...,

2
the Kth with mean vector B and covariance matrix . Therefore, throughout this
section we shall suppose that we may have independent data matrices

X

-—1’-£2""’5K’ where the rows of Xy4(ngxp) are independent and identically distri-
buted (i.i.d.) according to a multivariate normal distribution, Np(uy,Z),
g=1,2,...,K. We may want to compare the K sample mean vectors given that all K
distributions have a common covariance matrix f. This is the well known multi-
variate analysis of variance (MANOVA) model. In terms of the parameters the
MANOVA model is 9’(21’22"°"EK"£) with m=kp+p(p+l)/2 parameters, where k is the
number of groups, and p is the number of variables.

We shall derive the form of AIC for this model. Recall the definition of

AIC from Section 1,
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AIC = -2 loge L(8) + 2m

= -2 loge (maximized likelihood) + 2m ,

where m denotes the number of free parameters within the model.

Consider K normal populations with different mean vectors Bgs 9=1,2,...,
Kseeo,Ke Let Xgi, g=1,2,...,K; 121,2,...,ng, be 2@ random sample of observations
from the g-th population Np(ggtg). If the groups or samples can differ only in
their mean vectors, we can write the multivariate one-way analysis variance

(MANOVA) model as
(3.1.1) &gi 2y Eqi» g=1,2,...,K; i=1,2,..-,ﬂg,

where 591 is the (pxl) response or outcome vector in the g-th
group for the i-th individual or object,
pg are vector parameters, and

ggi are independent N,(0,z) random vector errors.

Thus, the basic null hypothesis we usually are interested in testinyg is

given by
(3.1.2) H_:yu =2y _=2...2yu.
The alternative hypothesis is given by
1

H : Not all u are equal.

Wilks' lambda is a general statistic for handling this problem. Althouyh

there are several other conventional statistics for this purpose, they all can

be viewed as special cases of Wilks' A which we shall not discuss here.
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For notational purposes, we shall denote by T the “total" sum of squares
and products (SSP) matrix, by W the "within-group" or "within-sample" SSP

matrix, and by 8 the "between-group" SSP matrix. Hence, it can be shown that

(3.1.3) T=W+38,

where
K ng
(301.4) I = z Z (Xgl - X)(x i - x).
g:l i=1
K ng
(3.1.5) W= 2 2 (X91 - X )(X gi = X ),
a1 i -9 ~g
9
and
K - - - -
(3.1.6) B= [ ng (K- D)y - D),
g
with
Xq = — T° X al,2
_g ng iZ g1 s g s--Os »
(-1 P )
& g - x '| s, N = n .
n gzl i=l -9 g=1 9

Therefore, we can present multivariate one-way analysis of variance

(MANOVA) table as follows.
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TABLE 3.1. MANOVA TABLE

Source d.f. SSP matrix Wilks' criterion
3; Between samples K-1 ] |W]
}. I
Within samples n-K ] “Alp ; n-K; K-1)

Total n-1

|—

' Now, we derive the form of Akaike's Information Criterion (AIC) for the

MANOVA model given in (3.1.1), subject to the constraint yiven in (3.1.2).

The likelihood function of all the sample observations is given by

K
(3.1.7)  L(ug,zgiX) = ﬂll.g(gg.gg;ig)s
gl

or by
-np/2 K -n /2
(3.1.8) L = (2n) mlzgl 9 x
g=1

;:v—_
5 K -1 K 1 _ _
- exp {-1/2tr 2159 Ag - 1/2tr Zlnggg (xg = ug)(xg - ug)'} ,
3 g ¥
& K ng - -
- where n = gzlng and Ag = ill(fgi - Xg)(Xgi - %g)' .

The log likelihood function is

fv --
Dkt :lﬂ.l: .

. .\ . .
a & 8 .8wa - e, .
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(3.1.9)  1(ugsZgiX)

logL (ugs Zg5X)

K K .1
- (np/2) log(2x) - 1/2 gzlng1°9|§_g| - 1/2tr 9215 _l_\_g

K .1 _
- 1/2tr 21"959 (xg - g)(xg - pg)’ -
g:

Since the common covariance mtrix is I, the log likelihood function

becomes

(3.1.10) ({pqg},Z:X) = Toglk({ug},2;X)
-1 K
= - (np/2)1og(2x)-(n/2)10g |Z| = 1/2trE Xlg\_g
g=

ak
- atrr | nglXg - ugd(xg - kg)” »
g'

and the maximum-likelihood estimates (MLE's) of pg, and L are

(3.1.11) Bg = Xg, ¢=1,2,...,K,
and

(3.1.12) L=n W,
where W= TAp.

Substituting these back into (3.1.10) and sinplifying, the maximized log

1ikelihood becomes

PV S WO W ]
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(3.1.13) 1({ughZiX) = log L({ugh, i)

-1
- {(np/2)log(2s) - (n/2)log|n W| - (np/2),
where W is the “within-group" SSP matrix.
Since

(3.1.14) AIC = -2 logeL(8) + 2m ,

where m = kp + Eigtll is the number of parameters, then AIC becomes

(3.1.15) AIC (common £) = nploge(2w) +nloge|n'ﬂi| + np + 2[kp+ *l 1.

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

(3.1.16) AIC* (common £) = nlogelm + 2[(kp +ﬂ%ﬂl]

K
where n = ] ng = the total sample size,
g=1
|W| = the determinant of "within-group" SSP matrix,
k = number of groups or samples compared,
p = number of variables.

However, for purposes of comparison we retain the constants and use

AIC (common £).
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3.2, AIC for the Multivariate Model with Varying Parameters:

AIC (varying p and %)

As we mentioned in Section 1, the assumption of equality of covariance
matrices in MANOVA can cause serious problems. For this reason we may want
first test the equality of covariance matrices against the alternative that
not all covariance mtrices are equal, given no restriction on the population
mean vectors. Therefore, throughout this section we shall suppose that we may
have independent data matrices 51.52.....}1(, where the rows of Xg (ngxp) are
independent and identically distributed (i.i.d.) Np(gg,gg), g=1,2,...,K. In
terms of the parameters with varying mean vectors and covariance matrices,

the nultivariate model we shall consider is

9 b (EI’EZ’...’EK’EI’EZ’...'EK)

with m = kp + kp(p+1)/2 parameters, where k is the number of groups, and p is

the number of variables.

Thus, the basic null hypothesis we usually are interested in testing is

given by

(3.2.1) HO: 21 = Z B e e o ’EKQ

The alternative hypothesis is given by

Hl: Not all K covariance mtrices are equal.

In multivariate analysis this is known as the test of homogeneity of

covarfance mtrices.

To derive Akaike's Information Criterion (AIC) in this case the log
likelthood function is given by




........
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(3.2.2)  1({ug,ZghiX)

log L({ugsEg};X)

K K
= - (np/2) log(2x) - 1/2 Z n loglx | =125 n tre-la
19 g=s1 9 979

K
" 12 1nglxg - ug)'(xg - ug) -

The MLE's of pg and gg are

(3.2.3) Eg = !g s g=1)29000’K’

and .

(302.4) ZJ = _As/ngo
Substituting these back into (3.2.2) and simplifying, the maximized log

1ikelihood becomes

» -~ ~ ~

(3.2.5)  1({ugsZg};X) = log L({ug.Zg};X)

K -l
- (np/2)log(2%) - 1/2 | n log|n A | - (np/2).
g=l ¢ 9y

u

B I OOSOH P SEVEARVEE

Since
(3.2.6) AIC = -2 logeL(8) + 2m ,

where m = kp + kp(p+l1)/2 is the number of parameters, then AIC becomes

RS S P AP - e . . . S B . .".'."J
R R N R N L N N A PO ST P T W T I B L T Aaa A A a .t ol al A e alom_a
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K -1
(3.2.7) AIC(varying u and ) = nplog (2x) + nqlog |ng Aq| +
uand . gzl glog Ing Agl + np

+ 2[kp + kp(p+l)/2].

Since the constants do not affect the result of comparison of models, we

éi could ignore them and reduce the form of AIC to a much simpler form
= K

. (3.2.8) AIC*(varying y and £) = Zlnglogelﬂg| + 2[kp + kp(p+l)/2],
s g=

[
1! where ng = sample size of group or sample g=1,2,...K,
{' lﬁgl = the determinant of sum of squares and cross-products (SSCP)

matrix for group or sample g=1,2,...,K,
k = number of groups or samples compared, and
p = number of variables.

However, for purposes of comparison we retain the constants and use AIC given

by (3.2.7).

4. Numerical Examples of Multi-Sample Cluster Analysis on Real Data Sets

In this section we shall give two different numerical examples of multi-
sample cluster analysis, cluster the samples, and choose the best clusterings
by using Akaike's Information Criterion (AIC) as derived in Section 3.1 and
3.2. In example 4.2 we shall also present the numerical results of using the
w-square criterion as an alternative approach. We shall briefly discuss the
relative merits of AIC over w-square criterion. Une should note that these
criteria are qualitatively and quantitatively different.

Our computations were carried out for all the exampies we shall present

here on an IBM 4341, configured as a 370, by using a newly developed

"""" ™ o ® T T M W ® . Ta Tt m e At e e e e,

L T T ST T O i B . . .
e e e e e m et A e T T T A et e Y e e e ety e et e et e e e Rt T e T T T e AT el
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statistical library software by the first author for multi-sample cluster
analysis using AIC, called MSCA.AIC.
We shall illustrate our results first on the Fisher [5] iris data.

Example 4.1. Clustering of Irises by Groups: The iris data set is composed

of 150 iris species belonging to three groups or species, namely Iris setosa

(S), Iris versicolor (Ve), and Iris virginica (Vi) measured on sepal and petal

length and width. Each group is represented by 50 plants.

This data set has been quite extensively studied in classification and
cluster analysis since it was published by Fisher [5], and still today, is
being used as a “testing ground" for classification and clustering methods
proposed by many investigators such as Friedman and Rubin [6], Kendall [8],
Solomon [15], Mezzich and Solomon [13], and many others, including the present
authors.

For each of the 150 plants we already know the group structure of the
iris species, namely K=3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his

Tinear discriminant analysis the separation of I. setosa completely from I.

versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.

With this in mind, we cluster K23 samples (species) into k=1,2, and 3
groups on the basis of all the four variables. We obtain in total five
possible clustering alternatives. (In general, the total number of
possibflities is a Stirling Number of the Second Kind; see, e.y., Abramowitz

and Stegun [1]). Oenoting I. setosa by S, I. versicolor by Ve, and

1. wirginica by Vi, we have (S) (Ve) (Vi), (S, Ve) (Vi), (S, Vi) (Ve), (Ve, Vi)(S),
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and (S, Ve, Vi) as the possible clustering alternatives. Using the MANOVA model
and the multivariate model with varying parameters discussed in Sections 3.1 and
3.2 as our underlying models for clustering these three iris species, we obtained the

following results.

TABLE 4.1. THE AIC'S FOR IRISES BY GROUPS ON ALL VARIABLES UNDER MANOVA MUDEL
. ) 1
Alternative Clustering nloge(2x) nloge|n="W|| np | k | 2m | AIC (common £)
1 (S) (ve) (vi) 1,102,724 -1,504.2 600 | 3 | 44 242.524a
2 §S, Ve) Vi; 1,102.724 -1,085.9 600 | 2 | 36 652.824
3 S, Vi) (Ve 1,102.724 - 988.39 600 | 2 | 36 750,334
4 (ve, Vi) (S) | 1,102.724 -1,299.6 600 | 2| 36 439.124b
5 (S, Ve, Vi) 1,102.724 - 941.73 660 | 1 | 28 788.994

n = 150 plants, p = 4 variables
m = kp + p(p+l)/2 parameters

AIC (common £) = nplog (2x) + nloge|n-lW|+ np + 2m
o =

aFjprst Minimum AIC
bsecond Minimum AIC

. TABLE 4.2, THE AIC'S FOR IRISES BY GROUPS UN ALL VARIABLES UNUER THE MUDEL WITH
- VARYING PARAMETERS
™ K ] |
-2 Alternative | Clustering nploga(2%) | I n loge|ng="Agl| np k | 2m | AIC (varying
g=1 ¢ u and )
2
1 (S) (Ve) (Vi) | 1,102.724 -1,653.895 | 60U | 3 | 84 | 132.8292
- 2 (S, Ve) (vi) | 1,102.724 -1,251,.67% 600 | 2 | 96 507,049
- 3 (S, Vi) (ve) | 1,102.724 -1,144,480 600 | 2 | 56 614.244
L 4 (Ve, Vi) (S) | 1,102.724 -1,463.770 600 | 2 | 96 294.,954b
[ 5 (S, Ve, Vi) | 1,102.724 - 941,580 600 | 1 | 28 789,144
[ n = 150 plants, p = 4 variables
E! m = kp + kp(p+l)/2 parameters ’
E AIC(varying y and L) = nploge (2r) + gzl ngmgem;1 Agl +np + 2m
= 3F{rst Minimum AIC
Fi bSecond Minimum AIC
e e e e o]
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Looking at Tables 4.1 and 4.2, we see that, using all four variables
simultaneously under both models, the MAICE clustering is (S) (Ve) (Vi). This
indicates that indeed there are three types of species. ‘Not surprisingly, the
the second minimum AIC occurs at the alternative submodel 4 (Ve, Vi) (S),
under both models, telling us that if we were to cluster any one of the two

iris groups, we should cluster I. versicolor and I. virginica together as one

homogeneous group, and we should cluster I. setosa completely separately. We
note that the AIC values under submodel 2 and 3 are quite large indicating the
inferiority of these submodels. We can see the effect of clustering l. setosa

with 1. versicolor in submodel 2, and also with I. virginica in submodel 3,

by comparing the difference of AIC's in these submodels with that of submodel 4

in which I. versicolor and I. virginica were clustered together and I. Setosa

was clustered as a separate cluster on its own. According to AIC, we never
cluster three iris species as one homegeneous yroup (submodel 5). Again by
comparing the differences of AIC's of submodel 5 with that of submodels 4, 3,
and 2, respectively,‘we can measure the amount of heteroyeneity contributed by

I. setosa, [. versicolor, and I. virginica, respectively, in each clustering

alternative under the MANOVA model and the multivariate model with varying mean
vectors and covariance matrices. The larger this difference, the greater the
heterogeneity or separation of that group or sample from that of homegeneous
groups or samples in each clustering alternative.

In comparing the AIC's in Tables 4.1 and 4.2, we further notice that
AIC (varying u and ) values are much less than the AIC (common I) values for each
of the clustering alternatives except for the last clustering alternative (i.e.,

alternative 5) in clustering the iris ygroups or species. Since according to the

definition of AIC, the model with the minimum AIC is chosen to be the best model,
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then the above results suggest that when we are clusteriny iris data, and in
general, we should use different covariance matrices rather than using equal
covariance matrices.

We now present our results on the iris data by using the w-square
criterion given by (1.1) in Section 1, when we assume equal covariance matrices
between the iris groups or species. We should note here that in w-square
criterion given by (1.1) and in Mardia et al. ([12], p. 367), the estimated
pooled-within groups covariance matrix of £ is computed only once across all
the groups or samples to be clustered regardiess of the number of clustering
alternatives. In our version of w-square criterion we follow the same proce-
dure, but we recompute the estimate of £ in each clustering alternative when we
vary the number of clusters of groups or samples, k, when we are given, K, the
number of groups or samples to be clustered. We do this both under the assump-
tion of equal and separate covariance matrices between the iris groups. There-
fore, our numerical values on w-square criterion are quite different then the
original w-square criterion given in Mardia et al. [12], despite the fact that
we get the same results.

We give the computational results as follows.

2

TABLE 4.3. THE VALUES OF W, FOR IRISES BY GROUPS ON ALL VARIABLES
2 a 2 b 2 c
Alternative Clustering wa(common L) wa(common'g) wa(varying_g)
1 (S) (Ve) (Vi) | <eceee-a- * ol ceemanae * ] cceecaa- *
2 (S, Ve) (Vi) 2246.6046 137.9722 - 94,4149
3 (S, Vi) (Ve) 4484 .6178 142.3345 96.07U6
4 (Ve, Vi) (S) 430.0267** | 109.5511** 76.8212**
5 (S, Ve, Vi) 4774.1661 175,2u91 175.2091
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n = 150 plants, p = 4 variables
a 2
Original wa given in (1.1)

b,¢ 2
*“Our version of w
a

2
*w  cannot be computed (always equal to zero)
2

*Minimum of wz
a

Hence, we interpret the results in Table 4.3 in the same manner as we did
for AIC's. We see that at the alternative submodel 1, w: cannot be computed and
is always equal to zero when the iris groups are clustered as singletons. This
is always the case in general. Certainly this is a definite disadvantaye of w:
as compared to AIC which has a value even if the iris groups are clustered as
singletons, so that AIC can aid us in determining and understanding the amount
of heterogeneity or separation of the groups on a unique scale. The minimum of
w: occurs at the alternative submodel 4, telling us again that, if we were to

cluster any one of the two iris groups, we should cluster I. versicolor and

[. virginica together as one homogeneous group, and we should cluster [. setosa

completely separate as one heterogeneous group.

In short, w-square criterion gives the same results as AIC does, but as we
mentioned in Section 1, it does not make any allowance for m, the number of
parameters estimated within the clustering alternatives. AIC makes such an
allowance to achieve a parsimony when we compare “the yoodness of fit" of vari-
tous models as we do in comparing different clustering alternatives. W-square
criterion is short of having this important feature. Also as we saw, when we

have singleton clusters, it cannot be computed.

..........................
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Therefore, in our next example, we shall only give our results on AIC,
since our purpose is to introduce AIC in this paper as a new approach to be used

in evaluating multi-sample clusters.

Example 4.2. Clustering Graduate Students by Their Classification Groups:

A data set for applicants to admission to a Graduate School of Business given in
Johnson and Wichern ([9], p. 528) is composed of data for 85 applicants who were
classified by the admissions officer as Admit (A), Not Admit (NA), and Borderline (8),
based on undergraduate grade point average (GPA) and graduate management aptitude test
(GMAT) scores. The group sizes are n} = 31, n2 = 28, and n3=26 applicants.

With this in mind, we cluster K=3 groups of applicants into k=1,2 and 3 homoye-
neous groups on the basis of the two variables. Using the MANUVA model and the multi-
variate model with varying parameters, our results are as follows.

TABLE 4.4, THE AIC'S FOR APPLICANTS BY THEIR CLASSIFICATION GROUPS UNDER
MANOVA MODEL

b I
Alternative Clustering nloge(2n) nlogeln‘lgj np | k | 2m | AIC (common f)
1 (A) (NA) (B) 312.4391 406.1716 170 | 3| 18 9u6.61073
2 (A,NA) (B) 312.4391 566.7477 170 | 2 | 14 1063.1868
3 (A,B) (NA) 312.4391 491.7043 170 | 2 | 14 y88.1434¢C
4 (B,NA) (A) 312.4391 474.0420 170 | 2 | 14 970.4811b
5 (A, B, NA) 312.4391 581.9931 170 | 1 | 10 1074.4322

n = 85 applicants, p = 2 variables

m = kp + p(p+l)/2 parameters

AIC (common £) = nploge(2s) + nlogeln‘lﬂj+ np + 2m
*First Minimum AIC

bSecond Minimum AIC

“Third Minimum AIC
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TABLE 4.5. THE AIC'S FOR APPLICANTS BY THEIR CLASSIFICATIUN GROUPS
UNDER THE MUDEL WITH VARYING PARAMETERS

. K
Alternative| Clustering nloga(2x) | I ng]ogelng°1§9| np | k | 2m | AIC (varying u
g=l and £) ~
1 (A) (NA) (B) 312.4391 388.7472 170 | 3| 30 901.1863a
2 (A,NA) (B) 312.4391 509.4198 170 | 2 | v 1011.8589
3 (A,8) (NA) 312.4391 480.2378 170 | 2 | 20 982.6769¢
4 (B NA) (AR) 312.4391 465.7116 170 | 2 | 2v 968.1507b
5 B, M) 312.4391 581.9931 170 | 1 | 10 1074.4322
n = 85 applicants, p = 2 variables
m = kp + kp(p+1)/2 parameters
K -1
AIC = (varying u and ) = nploge(2x) + [ n logeln Agl + np + 2m
g=l 9

First Minimum AIC
b
Second Minimum AIC

c
Third Minimum AIC

Hence, looking at Tables 4.4 and 4.5, we see that, under both models, the first
minimum AIC occurs at the aiternative submodel 1, that is, when (A) (NA) (B) are all
clustered separately. This indicates that indeed there are three groups of applicants.
Therefore, the MAICE is submodel 1. The second minimum AIC occurs at the alternative
submodel 4 again under both models, telling us that if we were to cluster any one of
the two groups, then we should cluster Borderline (B) and Not Admit (NA) yroups
together as one homogeneous group, and we should cluster Admit (A) group completely
separate as one heterogeneous group. On the other hand, if we want to make a third
choice, then the third minimum of AIC occurs at the alternative submodel 3, indicating
to us the closeness of the Admit (A) group to the Borderline (B) group as one homoge-

neous cluster, and leaving Not Admit (NA) group on its own as a singleton cluster.

Therefore, this way, we can check the significance of each of the the clustering
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alternatives in the decision making process. In this example, we also never
cluster the three groups as one homogeneous group (submodel 5).

In comparing the AIC'S in Tables 4.4 and 4.5. for this example we also
notice that, AIC (varying y and L) values are less than the AIC (common I)
values for each of the clustering alternatives except for the last clusterinyg '
alternative (i.e., alternative 5) in clustering the applicant groups. These
results suggest that we should use different covariance matrices. However,
the values of AIC (varying y and £) and AIC (common t) are significantly
closer to one another that if we were to assume equal covariance matrices
between the applicant groups a priori, it would not have been a dubious
b assumption for this particular data set.

! Thus, it should be noted that via AIC we can now easily check the validity

.- of our assumptions in terms of using equal covariance matrices as opposed to

separate covariance matrices in a particular data set which is important in the

multi-sample clustering situation, and in general.

5. Conclusions and Discussion

From our numerical results in Section 4, we see that AIC and conseyuently
minimum AIC procedures can indeed successfully identify the best clustering

alternatives when we cluster samples into homogeneous sets of samples both in

the MANOVA model and the multivariate model with varying covariance matrices.
We can measure the amount of homogeneity and heterogeneity in clustering
samples. We can determine a priori whether we should use equal or varying
covariance matrices in the analysis of a data set.

The fact that AIC does not require the table look-up, which is the case in

conventional procedures, adds to the importance of the results obtained. This

-------------------------
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is one of the important virtues that AIC breaks away from conventional proce-
dures which try to test whether a parameter is “significant® or not using a
significance level a which is essentially arbitrary. The other important
virtue of AIC is that the penalty represented by the term 2 x (number of free
parameters) clearly demonstrates the necessity of choosing a class of models,
at least one of which will be able to provide a good approximation to the
distribution of data without adjusting too many parameters.

Thus, in concluding, we see that the use of AIC shows how to combine the
information in the likelihood with an appropriate function of the number of
parameters to obtain estimates of the information provided by competing
alternative models. Therefore, the definition of MAICE gives a clear
formulation of the principle of parsimony in statistical model building or
comparison as we demonstrated by numerical examples. And MAICE provides a
versatile procedure for statistical model identification which is free from
the ambiguities inherent in the application of conventional statistical

procedures.
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